Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.648
Filter
1.
Med Phys ; 51(4): 2413-2423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431967

ABSTRACT

BACKGROUND: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS: All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS: Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS: By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.


Subject(s)
Asthma , Bronchodilator Agents , Young Adult , Humans , Adult , Bronchodilator Agents/therapeutic use , Blood-Air Barrier , Lung/diagnostic imaging , Asthma/diagnostic imaging , Asthma/drug therapy , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon/therapeutic use
2.
Cells ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474375

ABSTRACT

Xenon, an inert gas commonly used in medicine, has been considered as a potential option for prolonged preservation of donor packed red blood cells (pRBCs) under hypoxic conditions. This study aimed to investigate how xenon affects erythrocyte parameters under prolonged storage. In vitro model experiments were performed using two methods to create hypoxic conditions. In the first method, xenon was introduced into bags of pRBCs which were then stored for 42 days, while in the second method, xenon was added to samples in glass tubes. The results of our experiment showed that the presence of xenon resulted in notable alterations in erythrocyte morphology, similar to those observed under standard storage conditions. For pRBC bags, hemolysis during storage with xenon exceeded the acceptable limit by a factor of six, whereas the closed-glass-tube experiment showed minimal hemolysis in samples exposed to xenon. Notably, the production of deoxyhemoglobin was specific to xenon exposure in both cell suspension and hemolysate. However, this study did not provide evidence for the purported protective properties of xenon.


Subject(s)
Blood Preservation , Hemolysis , Humans , Blood Preservation/methods , Xenon , Erythrocytes
3.
PeerJ ; 12: e16855, 2024.
Article in English | MEDLINE | ID: mdl-38390390

ABSTRACT

Background: Chronic post-surgical pain (CPSP) is one of the important causes of poor postoperative outcomes, the activation of microglia in the spinal cord is closely related to the generation, transmission and maintenance of CPSP. Xenon (Xe), an anesthetic gas, has been reported to be able to significantly reduce intraoperative analgesia and postoperative pain sensation at low doses. However, the mechanism of the regulatory effect of xenon on activated microglia after CPSP remains unclear. Methods: In this study, CPSP model rats were treated with 50% Xe inhalation for 1 h following skin/muscle incision and retraction (SMIR), once a day for 5 consecutive days, and then the painbehavioraltests (pain behavior indexes paw withdrawal mechanical threshold, PWMT and thermal withdrawal latency, TWL), microglial activation, oxidative stress-related indexes (malondialdehyde, MDA; superoxide dismutase, SOD; hydrogen peroxide, H2O2; and catalase, CAT), mitophagy and PINK1/Parkin pathway were examined. Results: The present results showed that a single dose of Xe treatment in SMIR rat model could significantly improve PWMT and TWL in the short-term at a single treatment and long-term at multiple treatments. Xe treatment inhibited microglia activation and oxidative stress in the spinal dorsal horn of SMIR rats, as indicated by the decrease of Iba1 and MDA/H2O2 levels and the increase of SOD/CAT levels. Compared with the control group, Xe further increased the CPSP promoted Mito-Tracker (a mitochondrial marker) and LC3 (an autophagy marker) co-localization positive spots and PINK1/Parkin/ATG5/BECN1 (autophagy-related proteins) protein expression levels, and inhibited the Mito-SOX (a mitochondrial reactive oxygen species marker) positive signal, indicating that Xe promoted microglia mitophagy and inhibited oxidative stress in CPSP. Mechanistically, we verified that Xe promoted PINK1/Parkin signaling pathway activation. Conclusion: Xe plays a role in ameliorating chronic post-surgical pain by regulating the PINK1/Parkin pathway mediated microglial mitophagy and provide new ideas and targets for the prevention and treatment of CPSP.


Subject(s)
Microglia , Mitophagy , Rats , Animals , Microglia/metabolism , Xenon/pharmacology , Hydrogen Peroxide/metabolism , Superoxide Dismutase/metabolism , Pain, Postoperative/drug therapy , Ubiquitin-Protein Ligases/metabolism , Protein Kinases/metabolism
4.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339217

ABSTRACT

Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Xenon Isotopes/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Solubility , Xenon/chemistry
5.
J Vis Exp ; (203)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38251797

ABSTRACT

Hyperpolarized (HP) xenon magnetic resonance imaging (129Xe MRI) is a recently federal drug administration (FDA)-approved imaging modality that produces high-resolution images of an inhaled breath of xenon gas for investigation of lung function. However, implementing 129Xe MRI is uniquely challenging as it requires specialized hardware and equipment for hyperpolarization, procurement of xenon imaging coils and coil software, development and compilation of multinuclear MR imaging sequences, and reconstruction/analysis of acquired data. Without proper expertise, these tasks can be daunting, and failure to acquire high-quality images can be frustrating, and expensive. Here, we present some quality control (QC) protocols, troubleshooting practices, and helpful tools for129Xe MRI sites, which may aid in the acquisition of optimized, high-quality data and accurate results. The discussion will begin with an overview of the process for implementing HP 129Xe MRI, including requirements for a hyperpolarizer lab, the combination of 129Xe MRI coil hardware/software, data acquisition and sequence considerations, data structures, k-space and image properties, and measured signal and noise characteristics. Within each of these necessary steps lies opportunities for errors, challenges, and unfavorable occurrences leading to poor image quality or failed imaging, and this presentation aims to address some of the more commonly encountered issues. In particular, identification and characterization of anomalous noise patterns in acquired data are necessary to avoid image artifacts and low-quality images; examples will be given, and mitigation strategies will be discussed. We aim to make the 129Xe MRI implementation process easier for new sites while providing some guidelines and strategies for real-time troubleshooting.


Subject(s)
Body Fluids , Magnetic Resonance Imaging , Data Accuracy , Quality Control , Xenon
6.
Radiat Oncol ; 19(1): 16, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291439

ABSTRACT

BACKGROUND: Ionotropic glutamate receptors α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) modulate proliferation, invasion and radioresistance in glioblastoma (GB). Pharmacological targeting is difficult as many in vitro-effective agents are not suitable for in patient applications. We aimed to develop a method to test the well tolerated AMPAR- and NMDAR-antagonist xenon gas as a radiosensitizer in GB. METHODS: We designed a diffusion-based system to perform the colony formation assay (CFA), the radiobiological gold standard, under xenon exposure. Stable and reproducible gas atmosphere was validated with oxygen and carbon dioxide as tracer gases. After checking for AMPAR and NMDAR expression via immunofluorescence staining we performed the CFA with the glioblastoma cell lines U87 and U251 as well as the non-glioblastoma derived cell line HeLa. Xenon was applied after irradiation and additionally tested in combination with NMDAR antagonist memantine. RESULTS: The gas exposure system proved compatible with the CFA and resulted in a stable atmosphere of 50% xenon. Indications for the presence of glutamate receptor subunits were present in glioblastoma-derived and HeLa cells. Significantly reduced clonogenic survival by xenon was shown in U87 and U251 at irradiation doses of 4-8 Gy and 2, 6 and 8 Gy, respectively (p < 0.05). Clonogenic survival was further reduced by the addition of memantine, showing a significant effect at 2-8 Gy for both glioblastoma cell lines (p < 0.05). Xenon did not significantly reduce the surviving fraction of HeLa cells until a radiation dose of 8 Gy. CONCLUSION: The developed system allows for testing of gaseous agents with CFA. As a proof of concept, we have, for the first time, unveiled indications of radiosensitizing properties of xenon gas in glioblastoma.


Subject(s)
Glioblastoma , Radiation-Sensitizing Agents , Humans , Xenon/pharmacology , Xenon/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Memantine , HeLa Cells , Receptors, N-Methyl-D-Aspartate , Radiation-Sensitizing Agents/pharmacology
7.
J Environ Radioact ; 273: 107383, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237239

ABSTRACT

Many countries are considering nuclear power as a means of reducing greenhouse gas emissions, and the IAEA (IAEA, 2022) has forecasted nuclear power growth rates up to 224% of the 2021 level by 2050. Nuclear power plants release trace quantities of radioxenon, an inert gas that is also monitored because it is released during nuclear explosive tests. To better understand how nuclear energy growth (and resulting Xe emissions) could affect a global nonproliferation architecture, we modeled daily releases of radioxenon isotopes used for nuclear explosion detection in the International Monitoring System (IMS) that is part of the Comprehensive Nuclear Test-Ban Treaty: 131mXe, 133Xe, 133mXe, and 135Xe to examine the change in the number of potential radioxenon detections as compared to the 2021 detection levels. If a 40-station IMS network is used, the potential detections of 133Xe in 2050 would range from 82% for the low-power scenario to 195% for the high-power scenario, compared to the detections in 2021. If an 80-station IMS network is used, the potential detections of 133Xe in 2050 would range from 83% of the 2021 detection rate for the low-power scenario to 209% for the high-power scenario. Essentially no detections of 131mXe and 133mXe are expected. The high growth scenario could lead to a 2.5-fold increase in 135Xe detections, but the total number of detections is still small (on the order of 1 detection per day in the entire network). The higher releases do not pose a health issue, but better automated methods to discriminate between radioactive xenon released from industrial sources and nuclear explosions will be needed to offset the higher workload for people who perform the monitoring.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Humans , Xenon Radioisotopes/analysis , Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Xenon/analysis , Isotopes
8.
J Vis Exp ; (201)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38078603

ABSTRACT

Hyperpolarized 129Xe MRI comprises a unique array of structural and functional lung imaging techniques. Technique standardization across sites is increasingly important given the recent FDA approval of 129Xe as an MR contrast agent and as interest in 129Xe MRI increases among research and clinical institutions. Members of the 129Xe MRI Clinical Trials Consortium (Xe MRI CTC) have agreed upon best practices for each of the key aspects of the 129Xe MRI workflow, and these recommendations are summarized in a recent publication. This work provides practical information to develop an end-to-end workflow for collecting 129Xe MR images of lung ventilation according to the Xe MRI CTC recommendations. Preparation and administration of 129Xe for MR studies will be discussed and demonstrated, with specific topics including choice of appropriate gas volumes for entire studies and for individual MR scans, preparation and delivery of individual 129Xe doses, and best practices for monitoring subject safety and 129Xe tolerability during studies. Key MR technical considerations will also be covered, including pulse sequence types and optimized parameters, calibration of 129Xe flip angle and center frequency, and 129Xe MRI ventilation image analysis.


Subject(s)
Lung , Xenon Isotopes , Lung/diagnostic imaging , Lung/pathology , Magnetic Resonance Imaging/methods , Xenon
9.
ACS Sens ; 8(12): 4707-4715, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38064687

ABSTRACT

Hyperpolarized (HP) xenon-129 (129Xe) magnetic resonance imaging (MRI) has the potential to be used as a molecular imaging modality. For this purpose, numerous supramolecular cages have been developed and evaluated in the past. Herein, we report a novel and unique macrocycle that can be successfully utilized for xenon MRI, the resorcinarene trimer methanesulfonate (R3-Noria-MeSO3H). This molecule is capable of two different contrast mechanisms for xenon-MRI, resulting from an increase in the effective spin-spin relaxation and hyperpolarized chemical exchange saturation transfer (HyperCEST). We have demonstrated a superior negative contrast caused by R3-Noria-MeSO3H on HP 129Xe MRI at 3.0 T as well as HyperCEST imaging of the studied macrocycle. Additionally, we have found that the complex aggregation behaviors of R3-Noria-methanesulfonate and its impact on xenon-129 relaxivity are an area for future study.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Xenon/chemistry , Contrast Media/chemistry , Mesylates
10.
Article in English | MEDLINE | ID: mdl-38082665

ABSTRACT

This study characterizes the neurophysiological mechanisms underlying electromagnetic imaging signals using stability analysis. Researchers have proposed that transitions between conscious awake and anaesthetised states, and other brain states more generally, may result from system stability changes. The concept of stability in dynamical systems theory provides a mathematical framework to describe this possibility. In particular, the degree to which a system's trajectory in phase space is affected by small perturbations determines the stability. Previous studies using linear or oscillator-based whole-brain models cannot represent complex cerebrocortical dynamics, or model parameters were pre-assumed or inferred from data but did not change over time. This study proposes a nonlinear neurophysiologically plausible whole-cortex modeling framework to analyze the stability of brain dynamics for the emergence and disappearance of consciousness using time-varying parameters estimated from the data.Clinical relevance- Depth of anaesthesia is typically measured through changes in EEG statistics like the bispectral index and spectral entropy. However, these monitors have been found to fail in preventing awareness during surgery and postoperative recall. Our whole-cortex stability analysis may be useful in measuring anaesthesia levels in clinical settings, as it changes with the level of consciousness and is independent of individual differences and anaesthetic agents. The proposed method can also be used to, for example, identify critical brain regions for consciousness, locate the epileptogenic zone and investigate the dominance of extrinsic or intrinsic factors in brain functions.


Subject(s)
Anesthesia , Anesthetics , Humans , Xenon , Electroencephalography/methods , Brain/physiology
11.
BMC Anesthesiol ; 23(1): 366, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946114

ABSTRACT

The latest clinical trials have reported conflicting outcomes regarding the effectiveness of xenon anesthesia in preventing postoperative neurocognitive dysfunction; thus, this study assessed the existing evidence. We searched the PubMed, Embase, Cochrane Library, and Web of Science databases from inception to April 9, 2023, for randomized controlled trials of xenon anesthesia in postoperative patients. We included English-language randomized controlled studies of adult patients undergoing surgery with xenon anesthesia that compared its effects to those of other anesthetics. Duplicate studies, pediatric studies, and ongoing clinical trials were excluded. Nine studies with 754 participants were identified. A forest plot revealed that the incidence of postoperative neurocognitive dysfunction did not differ between the xenon anesthesia and control groups (P = 0.43). Additionally, xenon anesthesia significantly shortened the emergence time for time to opening eyes (P < 0.001), time to extubation (P < 0.001), time to react on demand (P = 0.01), and time to time and spatial orientation (P = 0.04). However, the Aldrete score significantly increased with xenon anesthesia (P = 0.005). Postoperative complications did not differ between the anesthesia groups. Egger's test for bias showed no small-study effect, and a trim-and-fill analysis showed no apparent publication bias. In conclusion, xenon anesthesia probably did not affect the occurrence of postoperative neurocognitive dysfunction. However, xenon anesthesia may effectively shorten the emergence time of certain parameters without adverse effects.


Subject(s)
Anesthetics , Delirium , Adult , Humans , Child , Xenon/pharmacology , Postoperative Period , Anesthesia, Inhalation/adverse effects , Delirium/chemically induced
12.
J Vis Exp ; (201)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38009715

ABSTRACT

Hyperpolarized Xenon-129 (HXe) magnetic resonance imaging (MRI) provides tools for obtaining 2- or 3-dimensional maps of lung ventilation patterns, gas diffusion, Xenon uptake by lung parenchyma, and other lung function metrics. However, by trading spatial for temporal resolution, it also enables tracing of pulmonary Xenon gas exchange on a ms timescale. This article describes one such technique, chemical shift saturation recovery (CSSR) MR spectroscopy. It illustrates how it can be used to assess capillary blood volume, septal wall thickness, and the surface-to-volume ratio in the alveoli. The flip angle of the applied radiofrequency pulses (RF) was carefully calibrated. Single-dose breath-hold and multi-dose free-breathing protocols were employed for administering the gas to the subject. Once the inhaled Xenon gas reached the alveoli, a series of 90° RF pulses was applied to ensure maximum saturation of the accumulated Xenon magnetization in the lung parenchyma. Following a variable delay time, spectra were acquired to quantify the regrowth of the Xenon signal due to gas exchange between the alveolar gas volume and the tissue compartments of the lung. These spectra were then analyzed by fitting complex pseudo-Voigt functions to the three dominant peaks. Finally, the delay time-dependent peak amplitudes were fitted to a one-dimensional analytical gas-exchange model to extract physiological parameters.


Subject(s)
Xenon Isotopes , Xenon , Xenon Isotopes/chemistry , Lung/diagnostic imaging , Lung/physiology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
13.
Tomography ; 9(5): 1603-1616, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37736981

ABSTRACT

Commercial human MR scanners are optimised for proton imaging, containing sophisticated prescan algorithms with setting parameters such as RF transmit gain and power. These are not optimal for X-nuclear application and are challenging to apply to hyperpolarised experiments, where the non-renewable magnetisation signal changes during the experiment. We hypothesised that, despite the complex and inherently nonlinear electrodynamic physics underlying coil loading and spatial variation, simple linear regression would be sufficient to accurately predict X-nuclear transmit gain based on concomitantly acquired data from the proton body coil. We collected data across 156 scan visits at two sites as part of ongoing studies investigating sodium, hyperpolarised carbon, and hyperpolarised xenon. We demonstrate that simple linear regression is able to accurately predict sodium, carbon, or xenon transmit gain as a function of position and proton gain, with variation that is less than the intrasubject variability. In conclusion, sites running multinuclear studies may be able to remove the time-consuming need to separately acquire X-nuclear reference power calibration, inferring it from the proton instead.


Subject(s)
Algorithms , Protons , Humans , Calibration , Carbon , Xenon
14.
Magn Reson Med ; 90(6): 2334-2347, 2023 12.
Article in English | MEDLINE | ID: mdl-37533368

ABSTRACT

PURPOSE: To demonstrate the feasibility of a multi-breath xenon-polarization transfer contrast (XTC) MR imaging approach for simultaneously evaluating regional ventilation and gas exchange parameters. METHODS: Imaging was performed in five healthy volunteers and six chronic obstructive pulmonary disease (COPD) patients. The multi-breath XTC protocol consisted of three repeated schemes of six wash-in breaths of a xenon mixture and four normoxic wash-out breaths, with and without selective saturation of either the tissue membrane or red blood cell (RBC) resonances. Acquisitions were performed at end-exhalation while subjects maintained tidal breathing throughout the session. The no-saturation, membrane-saturation, and RBC-saturation images were fit to a per-breath gas replacement model for extracting voxelwise tidal volume (TV), functional residual capacity (FRC), and fractional ventilation (FV), as well as tissue- and RBC-gas exchange (fMem and fRBC , respectively). The sensitivity of the derived model was also evaluated via simulations. RESULTS: With the exception of FRC, whole-lung averages for all metrics were decreased in the COPD subjects compared to the healthy cohort, significantly so for FV, fRBC , and fMem . Heterogeneity was higher overall in the COPD subjects, particularly for fRBC , fMem , and fRBC:Mem . The anterior-to-posterior gradient associated with the gravity-dependence of lung function in supine imaging was also evident for FV, fRBC , and fMem values in the healthy subjects, but noticeably absent in the COPD cohort. CONCLUSION: Multi-breath XTC imaging generated high-resolution, co-registered maps of ventilation and gas exchange parameters acquired during tidal breathing and with low per-breath xenon doses. Clear differences between healthy and COPD subjects were apparent and consistent with spirometry.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Xenon , Humans , Lung/diagnostic imaging , Xenon Isotopes , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Magnetic Resonance Imaging/methods
15.
Int J Mol Sci ; 24(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37511071

ABSTRACT

Hyperpolarized (HP) xenon-129 (129Xe), when dissolved in blood, has two NMR resonances: one in red blood cells (RBC) and one in plasma. The impact of numerous blood components on these resonances, however, has not yet been investigated. This study evaluates the effects of elevated glucose levels on the chemical shift (CS) and T2* relaxation times of HP 129Xe dissolved in sterile citrated sheep blood for the first time. HP 129Xe was mixed with sheep blood samples premixed with a stock glucose solution using a liquid-gas exchange module. Magnetic resonance spectroscopy was performed on a 3T clinical MRI scanner using a custom-built quadrature dual-tuned 129Xe/1H coil. We observed an additional resonance for the RBCs (129Xe-RBC1) for the increased glucose levels. The CS of 129Xe-RBC1 and 129Xe-plasma peaks did not change with glucose levels, while the CS of 129Xe-RBC2 (original RBC resonance) increased linearly at a rate of 0.015 ± 0.002 ppm/mM with glucose level. 129Xe-RBC1 T2* values increased nonlinearly from 1.58 ± 0.24 ms to 2.67 ± 0.40 ms. As a result of the increased glucose levels in blood samples, the novel additional HP 129Xe dissolved phase resonance was observed in blood and attributed to the 129Xe bound to glycated hemoglobin (HbA1c).


Subject(s)
Maillard Reaction , Xenon Isotopes , Animals , Sheep , Xenon Isotopes/chemistry , Magnetic Resonance Imaging/methods , Hemoglobins , Glucose , Xenon , Lung
16.
PLoS One ; 18(7): e0288329, 2023.
Article in English | MEDLINE | ID: mdl-37440512

ABSTRACT

Mathematical techniques for modeling and simulating dangerous or complex systems, such as nuclear technology systems, often require high-performance computing to process and analyze available data. In this paper, simple and quick method to support studies and research related to nuclear fuel is presented. This reasonably simple method helps to predict different concentrations of actinides and fission products in nuclear fuels without the need for expensive specialized programs and highly-trained researchers. The great importance of this approach is the speed of predicting the components of nuclear fuel concentrations, which in turn leads to quick decision-making, such as the possibility of operating fuel at higher burnup values, predicting the amount of gases resulting from nuclear fission (which may accumulate and cause problems in nuclear fuel such as volume swells), and other important decisions in nuclear fuel technology. The predicted equations have been generalized for higher values of burnup and compared with comparable results from MCNP codes. The equations deduced in calculating the different concentrations of xenon and krypton isotopes resulting from fission in burnup of nuclear fuel showed very precise results with discrepancies (magnitude of an error between the data points and the corresponding predicted ones) less than 2%. The suggested method offers a great advantage for researchers, which are the use one of any simple or common computational programs available to most researchers and do not need much experience to deal with, such as MATLAB, Excel that are easy to use for regression analyses. In this paper, the advantages of the proposed method are explained along with the limitations of its use.


Subject(s)
Gases , Isotopes , Xenon , Algorithms
17.
Trials ; 24(1): 417, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337295

ABSTRACT

BACKGROUND: Aneurysmal subarachnoid hemorrhage (aSAH) is a neurological emergency, affecting a younger population than individuals experiencing an ischemic stroke; aSAH is associated with a high risk of mortality and permanent disability. The noble gas xenon has been shown to possess neuroprotective properties as demonstrated in numerous preclinical animal studies. In addition, a recent study demonstrated that xenon could attenuate a white matter injury after out-of-hospital cardiac arrest. METHODS: The study is a prospective, multicenter phase II clinical drug trial. The study design is a single-blind, prospective superiority randomized two-armed parallel follow-up study. The primary objective of the study is to explore the potential neuroprotective effects of inhaled xenon, when administered within 6 h after the onset of symptoms of aSAH. The primary endpoint is the extent of the global white matter injury assessed with magnetic resonance diffusion tensor imaging of the brain. DISCUSSION: Despite improvements in medical technology and advancements in medical science, aSAH mortality and disability rates have remained nearly unchanged for the past 10 years. Therefore, new neuroprotective strategies to attenuate the early and delayed brain injuries after aSAH are needed to reduce morbidity and mortality. TRIAL REGISTRATION: ClinicalTrials.gov NCT04696523. Registered on 6 January 2021. EudraCT, EudraCT Number: 2019-001542-17. Registered on 8 July 2020.


Subject(s)
Brain Injuries , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/complications , Diffusion Tensor Imaging , Xenon/therapeutic use , Prospective Studies , Single-Blind Method , Follow-Up Studies , Brain Injuries/complications , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
18.
J Pharmacol Exp Ther ; 386(3): 331-343, 2023 09.
Article in English | MEDLINE | ID: mdl-37391223

ABSTRACT

The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Xenon , Rats , Animals , Rats, Wistar , Xenon/pharmacology , Xenon/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Neurons , Synaptic Transmission , Presynaptic Terminals/metabolism , Hippocampus/metabolism , Spinal Cord , Neurotransmitter Agents/metabolism
19.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239964

ABSTRACT

Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 channels are dually gated by the membrane voltage and via cyclic nucleotides binding to the cyclic nucleotide-binding domain (CNBD) on the channel. In this study, we hypothesize that xenon interferes with the HCN2 CNBD to mediate its effect. Using the transgenic mice model HCN2EA, in which the binding of cAMP to HCN2 was abolished by two amino acid mutations (R591E, T592A), we performed ex-vivo patch-clamp recordings and in-vivo open-field test to prove this hypothesis. Our data showed that xenon (1.9 mM) application to brain slices shifts the V1/2 of Ih to more hyperpolarized potentials in wild-type thalamocortical neurons (TC) (V1/2: -97.09 [-99.56--95.04] mV compared to control -85.67 [-94.47--82.10] mV; p = 0.0005). These effects were abolished in HCN2EA neurons (TC), whereby the V1/2 reached only -92.56 [-93.16- -89.68] mV with xenon compared to -90.03 [-98.99--84.59] mV in the control (p = 0.84). After application of a xenon mixture (70% xenon, 30% O2), wild-type mice activity in the open-field test decreased to 5 [2-10] while in HCN2EA mice it remained at 30 [15-42]%, (p = 0.0006). In conclusion, we show that xenon impairs HCN2 channel function by interfering with the HCN2 CNBD site and provide in-vivo evidence that this mechanism contributes to xenon-mediated hypnotic properties.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Potassium Channels , Xenon , Animals , Mice , Cyclic Nucleotide-Gated Cation Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hypnotics and Sedatives/pharmacology , Neurons/metabolism , Nucleotides, Cyclic/metabolism , Potassium Channels/metabolism , Xenon/pharmacology
20.
Magn Reson Med ; 90(4): 1555-1568, 2023 10.
Article in English | MEDLINE | ID: mdl-37246900

ABSTRACT

PURPOSE: 129 Xe MRI and MRS signals from airspaces, membrane tissues (M), and red blood cells (RBCs) provide measurements of pulmonary gas exchange. However, 129 Xe MRI/MRS studies have yet to account for hemoglobin concentration (Hb), which is expected to affect the uptake of 129 Xe in the membrane and RBC compartments. We propose a framework to adjust the membrane and RBC signals for Hb and use this to assess sex-specific differences in RBC/M and establish a Hb-adjusted healthy reference range for the RBC/M ratio. METHODS: We combined the 1D model of xenon gas exchange (MOXE) with the principle of TR-flip angle equivalence to establish scaling factors that normalize the dissolved-phase signals with respect to a standard H b 0 $$ H{b}^0 $$ (14 g/dL). 129 Xe MRI/MRS data from a healthy, young cohort (n = 18, age = 25.0 ± $$ \pm $$ 3.4 years) were used to validate this model and assess the impact of Hb adjustment on M/gas and RBC/gas images and RBC/M. RESULTS: Adjusting for Hb caused RBC/M to change by up to 20% in healthy individuals with normal Hb and had marked impacts on M/gas and RBC/gas distributions in 3D gas-exchange maps. RBC/M was higher in males than females both before and after Hb adjustment (p < 0.001). After Hb adjustment, the healthy reference value for RBC/M for a consortium-recommended acquisition of TR = 15 ms and flip = 20° was 0.589 ± $$ \pm $$ 0.083 (mean ± $$ \pm $$ SD). CONCLUSION: MOXE provides a useful framework for evaluating the Hb dependence of the membrane and RBC signals. This work indicates that adjusting for Hb is essential for accurately assessing 129 Xe gas-exchange MRI/MRS metrics.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Male , Female , Humans , Adult , Magnetic Resonance Imaging/methods , Hemoglobins , Xenon , Erythrocytes , Pulmonary Gas Exchange , Gases , Lung
SELECTION OF CITATIONS
SEARCH DETAIL
...